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Transcriptomes as assessed by either microarrays or next-
generation sequencing have produced a hitherto unprecedented
data flood regarding transcript identity and levels in plant sys-
tems. Microarray data has been extensively used over the last
15 years or so and evaluation of the data thus produced has
progressed well beyond early statistically quality evaluation and
descriptive lists to a mature science whereby gene networks and
cascades have been able to provide mechanistic insight. The devel-
opment of sensitive quantitative PCR for lowly expressed genes
such as transcription factors has additionally allowed another
layer of complexity to be accessed and the modeling of tran-
scription factor expression with that of target genes has met
considerable success. Yet more recently, data emanating from
RNAseq studies have greatly improved the coverage of transcript
profiling. That said, this technology further compounded tran-
scriptome analysis by making it possible to identify differentially
spliced transcripts etc. In this research topic we would like to pro-
vide an “on the fly” portrait of the use of either microarray or
RNAseq based datasets in contemporary Plant Systems Biology.

Given the relative simplicity of doing so, much information
has been gleaned from microarray datasets by assuming guilt-
by-association. The success of this approach is summarized by
articles of Provart (2012) and Tohge and Fernie (2012), as are
recent studies that go beyond transcription and link in physio-
logical and metabolic aspects. As in the legal process from which
the approach lifts its name it is important to note that suspects
obtained this way require “fair trial” since assuming “guilt” is
fraught with dangers as summarized in Usadel et al. (2009a).
Thus, Tohge and Fernie extend the use of the co-expression
approach for the annotation of assumed gene function and dis-
cuss bringing in further experimental “evidence” as provided
by metabolomics, proteomics, or physiological measurements
(Tohge et al., 2005; De Boldt et al., 2012). They then delve fur-
ther into the subject by explaining how to make a more solid case
by linking gene functions across multiple species (Mutwil et al.,
2011; Obayashi et al., 2011). The review by Provart (2012) also
reviews novel aspects of visualized correlations, however, pays
more attention to marrying these data with subcellular local-
ization and tissue/organ specific networks such as those defined
by SeedNet (Kohl et al., 2011) and the overlay of such net-
works with those derived from protein-protein interaction studies
(Geisler-Lee et al., 2007).

Junker et al. (2012a) follow a similar direction extending on
ideas put forward in their recent Trends in Biotechnology review

(Junker et al., 2012b) here focusing their attention on visual anal-
ysis of the transcriptome. They provide an overview of plant
transcriptomics repositories and detail how these can serve as
useful resources for visualization programs such as HIVE as
well as detailing how the color-coded output from such pro-
grams can be integrated with known biological networks using
analysis of floral homeotic gene expression patterns and seed
expression profiles as exemplary case studies. They further dis-
cuss information visualization standards as suggested by Card
et al. (1999) and the eFP browser (Winter et al., 2007). Friedel
et al. (2012) and Grene et al. (2012) follow a similar approach
whereby they re-analyse data using both visualization and net-
work techniques both interested in abiotic conditions. Whereas
Friedel uses network approaches and functional categories to
investigate stress responses, Grene focuses on winter hardening
in spruce. Interestingly Grene et al. (2012) is able to show a repro-
gramming of the cell wall and nucleotide sugar metabolism using
MapMan (Usadel et al., 2009b) and GO ontologies.

However, when it comes to data analysis of whole genome
expression datasets, particularly those obtained from complex
temporally and/or spatially resolved experiments visualization
helps in finding “the meaning within the noise.” Thus, currently
the researcher typically zooms in on a particular subset of the data
which excites their biological curiosity, often obtaining such data
from public repositories such as genevestigator (https://www.

genevestigator.com/gv). But much information and potentially
knowledge is untapped by adopting this approach. This leaves
one wondering if aided by modern biostatistics and bioinformat-
ics one shouldn’t be able to do better. To improve this situation
Klie et al. (2012) present a computational solution wherein recent
extension of the principal component analysis variants STATIS
and dual-STATIS (Lavit et al., 1994; Abdi et al., 2012) is applied
to study the time resolved response of Arabidopsis thaliana to
perturbations in the prevailing light and/or temperature condi-
tions. This proof-of-concept study illustrates that these tools can
clearly aid in dataset-wide analyses and furthermore that they can
specify the extent to which either the transcript levels or alterna-
tively the experimental treatments reflect these perturbations thus
providing biological insight across the entire datasets obtained.

As is evident from the multitude of manuscripts dealing with
microarray data, there is still much to be learned from these
data sets. However, time moves on and whilst it seems difficult
to teach old dogs new omics tricks, RNAseq is slowly becoming
more and more popular. Already machine learning techniques are
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trickling in to help separating noise from the data. Thus, Thieme
et al. (2012) try to find the proverbial needle in the haystack by
identifying Argonaute sorting signals for miRNAs. Whilst mutual
information didn’t indicate any other than the 5′ position to
dictate which of the 10 Argonaute proteins is processing which
miRNA, Thieme solve the problem of having only four possible
5′ bases for 10 different proteins, by showing that other positions
likely play a role as well.

Such analyses are assuming, however, that one actually knows
which transcripts to deal with. But one of the perceived beauties of
RNAseq is that one could learn about the transcriptome on the fly
whilst analysing the data by assembling the reads into transcripts.
This seems, however, an ambituous goal and thus in their article
Schliesky et al. (2012) address the question RNAseq assembly—
are we there yet? They review plant applications of 454/Roche
and Illumina sequencing which have in combination, to date,
already been used to assess the transcriptome of over 50 plant
species. Although they argue these approaches have been useful
in downstream applications such as proteomics (Lopez-Casado
et al., 2012) and the same can be argued for their recent use
to augment recent genome sequencing efforts (Tomato Genome
Consortium, 2012), assemblies may well not accurately reflect
the actual plant transcriptomes, especially if not checked well.
In order to ameliorate challenges for the transciptome assembly
problem they provide a list of quality control parameters and
the necessary scripts to produce them most likely providing an
invaluable resource for this burgeoning area of transcriptomes

and bringing the old idea of genomeless genomics (Rudd, 2005)
within the reach of even the smallest labs.

Rose et al. (2012) then round up the uses of RNAseq by provid-
ing both insights into how RNAseq has already benefited the plant
communityand detailed examples where genomeless genomics
was used. Extending beyond this, they show that RNAseq is also
valuable in finding small non-coding RNA highlighting the man-
ner demonstrated in the Thieme et al. (2012) article. In addition
they demonstrate how important RNAseq can be for bulk seg-
regant analysis and thus the identification of causal mutations.
Alongside these illustrations they additionally provide the wet
bench biologist with comprehensive workflows on how the RNA
should be processed for these varied applications.

Finally, in his article Kliebenstein (2012), tries to answer the
other burning questions of RNA-seq—How deep does deep-
sequencing need to go to capture the majority of network or
genomic information present in a variety of transciptomics exper-
iments? To address this question he applied Shannon entropy
analysis to existing Arabidopsis transcriptomics data namely a
co-expression network, an expression QTL analysis and a tem-
poral analysis of the circadian clock. Intriguingly, he came to the
conclusion that at least 80% of the information present in a tran-
scriptomic study is likely obtainable by measuring only the top
10% of the transcripts within a sample. This, rather surprising,
finding has important consequences for experimental design par-
ticularly with concern to the scale and affordability of large-scale
studies.
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